

Multilevel Mediation

Jeremy Yorgason SFL Methods Lunch Sept. 2013

Thanks

- Vaughn Call
- Lance Erickson
- Joe Olson
- Wes Godfrey
- Katie Gustafson
- Funding: Veterans Rural Health Resource Center (Western Region), VA SLC

Traditional Mediation

• Baron, R.M., & Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *Journal of Personality and Social Psychology*, *51*, 1173-1182.

Why Multilevel Mediation?

- When data violate the assumption of "independence of observations"
 - Clustered data
 - Repeated measures
- The nesting needs to be taken into account

• When researchers want to consider mediation at different levels (e.g., within-person mediation vs. between-person mediation, unconflated)

Multilevel Variables

- Within Person = Person's score at a given time point minus their mean across all waves. This gives you a value that represents the difference from one's average at a given time point
 - Person or group mean centered

- Between Person = Person's average across all time points
 - Sample or grand mean centered

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2
 - 2-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2

Multilevel Mediation:

Current Example

- Level 1 outcomes:
 - 1-1-1
 - 1-2-1
 - 2-1-1
 - 2-2-1
- Level 2 outcomes:
 - 2-2-2
 - 1-2-2
 - 1-1-2
 - 2-1-2

Multilevel Mediation: Estimation

- Bauer technique for SAS Proc Mixed
 - Double stack your data and create dummy variables to select each "stack" of data
 - In one of the stacks you specify that "Z" equals the outcome "Y"
 - In the other stack you specify that "Z" equals the outcome "M"
 - This approach essentially tricks the computer into estimating path A and path B simultaneously
 - May be best if you have a small sample size (e.g., N < 100?)

Multilevel SEM: Mediation

- Preacher, Zhang, & Zyphur (2010)
- http://www.quantpsy.org/medn.htm

- Bolger and Leaurenceau (2013)
- <u>http://www.amazon.com/Intensive-Longitudinal-Methods-Introduction-</u> <u>Methodology/dp/146250678X</u>

TITLE: 1-1-1 mediation (unconflated MLM) DATA: FILE IS mydata.dat; ! text file containing raw data in long format VARIABLE: NAMES ARE id x m y xmean mmean ymean; USEVARIABLES ARE id x m y xmean mmean; CENTERING IS GROUPMEAN(x m); ! group-mean center x and m CLUSTER IS id; ! Level-2 grouping identifier WITHIN ARE x m; ! identify variables with only Within variance; ! variables that are not claimed as "BETWEEN ARE" or "WITHIN ARE" can have ! both Within and Between variance BETWEEN ARE xmean mmean; ! identify variables with only Between variance ANALYSIS: TYPE IS TWOLEVEL RANDOM; **MODEL:** I model specification follows %WITHIN% ! Model for Within effects follows m ON x(aw); ! regress m on x, call the slope "aw" y ON m(bw); ! regress y on m, call the slope "bw" **y ON x**; ! regress y on x [m@0]; ! m was group-mean centered, so fix its mean to zero **%BETWEEN%** ! Model for Between effects follows mmean y; ! estimate Level-2 (residual) variances for mmean and y mmean ON xmean (ab); ! regress mmean on xmean, call the slope "ab" y ON mmean (bb); ! regress y on mmean, call the slope "bb" y ON xmean; ! regress y on xmean MODEL CONSTRAINT: ! section for computing indirect effects NEW(indb indw); ! name the indirect effects indw=aw*bw; ! compute the Within indirect effect indb=ab*bb: ! compute the Between indirect effect

Mplus Syntax for 1-1-1 MLSEM for Mediation

http://www.quantpsy.org/pubs/syntax_appendix_081311.pdf

OUTPUT: TECH1 TECH8 CINTERVAL; ! request parameter specifications, starting values, optimization history, and confidence intervals

A Daily Diary Example

- Life and Family Legacies Daily Experiences Study
 - 6,729 high school seniors in 1966
 - Follow-up surveys completed in 1980, 2010
 - Daily Diary random stratified sample of married respondents to the 2010 survey
 - N=1928 eligible
 - 559 randomly contacted to be recruited

A Daily Diary Example Across 14 days

Sample: N=191 couples

Ages: ranged from 60 to 64 (M=62.43)

Education: M = 3 years of college

Income: M = \$88,800/year

Marital Status: 58% in 1st marriage

Ethnicity: 98% Caucasian

Veteran Status: 65% of males were Vets

47% lived in Rural areas

Measures

- X Sleep
 - Hours of sleep the previous night
 - Sleep quality
 - Restedness
- M Positive and Negative Mood (Thomas & Deiner, 1990)
 - 9 items
- Y Positive and Negative Marital Events
 - Count variable indicating the positive and negative marital events endorsed each day of the survey
- Y Satisfaction with Daily Marital Interactions
 - Responses ranged from very unsatisfied (coded as 0) to very satisfied (coded as 6)

Mplus Input

Usevariables = id_f w_rest_f b_rest_f w_NMoodf b_NMoodf NMarE_f;

Between = b_rest_f b_NMoodf; Within = w_rest_f w_NMoodf; Cluster = id_f; useobservations are id_f < 185 or id_f > 185;

Analysis: Type = twolevel random;

Model:

%Within%

w_rest_f w_NMoodf NMarE_f; w_NMoodf on w_rest_f(aw); NMarE_f on w_NMoodf(bw); NMarE_f on w_rest_f (cw); %Between% b_rest_f b_NMoodf NMarE_f; b_NMoodf on b_rest_f (ab); NMarE_f on b_NMoodf (bb); NMarE_f on b_rest_f (cb);

Model Constraint: New(indb indw); indb=ab*bb; indw=aw*bw;

Output: Sampstat Tech1 Tech8 Cinterval;

Mplus Truncated Output

INPUT READING TERMINATED NORMALLY

Number of groups	1		
Number of observations	2598		
Number of dependent variables	3	3	
Number of independent variable	S	2	
Number of continuous latent var	iables	0	
SUMMARY OF DATA			
Number of clusters	191		
Average cluster size	13.602		
ESTIMATED SAMPLE STATISTICS	FOR WITHIN		
Means			
B_NMOODF B_REST_F	W_NMOODF	NMARE_F	W_REST_F
1 0.000 0.000 1		0.610	
ESTIMATED SAMPLE STATISTICS	FOR BETWEEN		
Means			
B_NMOODF B_REST_F	W_NMOODF	NMARE_F	W_REST_F
1 0.022 0.014 0.0	000 0.269 0	.000	
THE MODEL ESTIMATION TERMI	ΝΔΤΕΓΝΟΒΜΔΙΙΥ		
Number of Free Parameters	17		
Chi-Square Test of Model Fit	17		
Value 0.000)*		
Degrees of Freedom	0		
P-Value 1 000	ົ		
Scaling Correction Factor 1,0000			
for MLR	1.0000		
RMSEA (Root Mean Square Error Of Approximation)			
Estimate 0.00	017,001700,000,000,000,000,000,000,000,0		
CEI/TII			
CEI 1.000			
TII 1 000			
SRMR (Standardized Root Mean Square Residual)			
Value for Within	000		
Value for Retwoon	0.000		
	0.000		

MODEL RESULTS

Two-Tailed Estimate S.E. Est./S.E. P-Value Within Level NMARE_F ON W_REST_F -0.002 0.001 -1.689 0.091 W NMOODF 0.003 0.001 2.525 0.012 W NMOODF ON W_REST_F 0.534 0.119 4.466 0.000 Between Level B NMOODF ON B REST F -0.623 0.141 -4.423 0.000 NMARE_F ON B NMOODF 0.063 0.015 4.179 0.000 B REST F 0.002 0.020 0.101 0.919 New/Additional Parameters INDB -0.039 0.012 -3.316 0.001 INDW 0.002 0.001 2.390 0.017 CONFIDENCE INTERVALS OF MODEL RESULTS Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5% Within Level NMARE_F ON W REST_F -0.006 -0.005 -0.004 -0.002 0.000 0.000 0.001 W NMOODF 0.000 0.001 0.001 0.003 0.005 0.006 0.006 W_NMOODF ON W_REST_F 0.226 0.299 0.337 0.534 0.730 0.768 0.841 Between Level B NMOODF ON B_REST_F -0.987 -0.900 -0.855 -0.623 -0.392 -0.347 -0.260 NMARE F ON B NMOODF 0.024 0.034 0.038 0.063 0.088 0.093 0.102 B_REST_F -0.051 -0.038 -0.032 0.002 0.036 0.042 0.055 New/Additional Parameters INDB -0.070 -0.063 -0.059 -0.039 -0.020 -0.016 -0.009 INDW 0.000 0.000 0.001 0.002 0.003 0.003 0.004

Findings: Positive Mood

- Indirect effect of W/P restedness through W/P Positive Mood on Positive Marital Events: b = .01, z = 2.10, p = .036;
- Indirect effect of B/P restedness through B/P Positive Mood on Positive Marital Events: b = .37, z = 4.08, p = .000;

Findings: Negative Mood

- Indirect effect of W/P restedness through W/P Negative Mood on Negative Marital Events: b = .002, z = 2.39, p = .017;
- Indirect effect of B/P restedness through B/P Negative Mood on Negative Marital Events: b = -.04, z = -3.32, p = .001;

Findings: Positive Mood

 Indirect effect of W/P restedness through W/P Positive Mood on Negative Marital Events: b = -.001, z = -2.12, p = .034;

Questions

- What do you think about this approach?
 - Any suggestions?
 - Bootstrapping?
- Questions about MLM Mediation?
 Neg. indirect effect?
- Example in the literature
 Moderated mediation
- Gospel applications