Multilevel Mediation

Jeremy Yorgason
SFL Methods Lunch
Sept. 2013

Thanks

- Vaughn Call
- Lance Erickson
- Joe Olson
- Wes Godfrey
- Katie Gustafson
- Funding: Veterans Rural Health Resource Center (Western Region), VA SLC

Traditional Mediation

- Baron, R.M., \& Kenny, D.A. (1986). The moderator-mediator variable distinction in social psychological research:
Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.

Why Multilevel Mediation?

- When data violate the assumption of "independence of observations"
- Clustered data
- Repeated measures
- The nesting needs to be taken into account
- When researchers want to consider mediation at different levels (e.g., within-person mediation vs. between-person mediation, unconflated)

Multilevel Variables

- Within Person = Person's score at a given time point minus their mean across all waves. This gives you a value that represents the difference from one's average at a given time point
- Person or group mean centered
- Between Person = Person’s average across all time points
- Sample or grand mean centered

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:
- 2-2-2
- 1-2-2
- 1-1-2
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:

- 2-2-2
- 1-2-2
- 1-1-2
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:
- 2-2-2
- 1-2-2
- 1-1-2
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:
- 2-2-2
- 1-2-2
- 1-1-2
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:
- 2-2-2
- 1-2-2
$-1-1-2$
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:

- 1-1-2
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:

- 2-2-2
- 1-2-2
$-1-1-2$
- 2-1-2

Multi-levels of Mediation:

$$
X-M-Y
$$

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:
- 2-2-2
- 1-2-2
$-1-1-2$
- 2-1-2

Multilevel Mediation:

 Current Example

- Level 1 outcomes:
- 1-1-1
- 1-2-1
- 2-1-1
- 2-2-1
- Level 2 outcomes:
- 2-2-2
- 1-2-2
- 1-1-2
- 2-1-2

C

Multilevel Mediation: Estimation

- Bauer technique - for SAS Proc Mixed
- Double stack your data and create dummy variables to select each "stack" of data
- In one of the stacks you specify that " Z " equals the outcome " Y "
- In the other stack you specify that " Z " equals the outcome " M "
- This approach essentially tricks the computer into estimating path A and path B simultaneously
- May be best if you have a small sample size (e.g., $\mathrm{N}<100$?)

Multilevel SEM: Mediation

- Preacher, Zhang, \& Zyphur (2010)
- http://www.quantpsy.org/medn.htm
- Bolger and Leaurenceau (2013)
- http://www.amazon.com/Intensive-Longitudinal-Methods-IntroductionMethodology/dp/146250678X

TITLE: 1-1-1 mediation (unconflated MLM)
DATA: FILE IS mydata.dat; ! text file containing raw data in long format
VARIABLE: NAMES ARE id x m y xmean mmean ymean;
USEVARIABLES ARE id x m y xmean mmean;
CENTERING IS GROUPMEAN $(\mathrm{x} m$); ! group-mean center x and m
CLUSTER IS id; ! Level-2 grouping identifier
WITHIN ARE x m; ! identify variables with only Within variance;
! variables that are not claimed as "BETWEEN ARE" or "WITHIN ARE" can have ! both Within and Between variance

BETWEEN ARE xmean mmean; ! identify variables with only Between variance ANALYSIS: TYPE IS TWOLEVEL RANDOM;
MODEL: ! model specification follows
\%WITHIN\% ! Model for Within effects follows
m ON x (aw); ! regress m on x, call the slope "aw"
y ON m(bw); ! regress y on m, call the slope "bw"
y ON x ; ! regress y on x

Mplus Syntax for 1-1-1 MLSEM for Mediation

[$\mathrm{m} @ 0$]; ! m was group-mean centered, so fix its mean to zero \%BETWEEN\% ! Model for Between effects follows
mmean y ; ! estimate Level- 2 (residual) variances for mmean and y
mmean ON xmean (ab); ! regress mmean on xmean, call the slope "ab"
http://www.quantpsy.org/pubs/syntax appendix 081311.pdf
y ON mmean (bb); ! regress y on mmean, call the slope "bb"
y ON xmean; ! regress y on xmean
MODEL CONSTRAINT: ! section for computing indirect effects
NEW(indb indw); ! name the indirect effects
indw=aw*bw; ! compute the Within indirect effect
indb=ab*bb; ! compute the Between indirect effect
OUTPUT: TECH1 TECH8 CINTERVAL; ! request parameter specifications, starting values, optimization history, and confidence intervals

A Daily Diary Example

- Life and Family Legacies Daily Experiences Study
-6,729 high school seniors in 1966
- Follow-up surveys completed in 1980, 2010
- Daily Diary - random stratified sample of married respondents to the 2010 survey
- $N=1928$ eligible
- 559 randomly contacted to be recruited

A Daily Diary Example Across 14 days

Sample: $\mathrm{N}=191$ couples
Ages: ranged from 60 to 64 ($\mathrm{M}=62.43$)
Education: $\mathrm{M}=3$ years of college
Income: $\mathrm{M}=\$ 88,800 /$ year
Marital Status: 58% in $1^{\text {st }}$ marriage
Ethnicity: 98\% Caucasian
Veteran Status: 65% of males were Vets
47\% lived in Rural areas

Measures

X - Sleep

- Hours of sleep the previous night
- Sleep quality
- Restedness

M - Positive and Negative Mood (Thomas \& Deiner, 1990)

- 9 items

Y - Positive and Negative Marital Events

- Count variable indicating the positive and negative marital events endorsed each day of the survey
Y - Satisfaction with Daily Marital Interactions
- Responses ranged from very unsatisfied (coded as 0) to very satisfied (coded as 6)

Mplus Input

Usevariables = id_f w_rest_f b_rest_f
w_NMoodf b_NMoodf NMarE_f;

Between = b_rest_f b_NMoodf;
Within = w_rest_f w_NMoodf;
Cluster = id_f;
useobservations are id_f < 185 or id_f > 185;

Analysis: Type = twolevel random;

Model:
\%Within\%
w_rest_f w_NMoodf NMarE_f;
w_NMoodf on w_rest_f(aw);
NMarE_f on w_NMoodf(bw);
NMarE_f on w_rest_f (cw);
b_rest_f b_NMoodf NMarE_f;
b_NMoodf on b_rest_f (ab);
NMarE_f on b_NMoodf (bb);
NMarE_f on b_rest_f (cb);

Model Constraint:
New(indb indw);
indb=ab*bb;
indw=aw*bw;

Output: Sampstat Tech1 Tech8 Cinterval;

Mplus Truncated Output

INPUT READING TERMINATED NORMALLY

THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters
17
Chi-Square Test of Model Fit
Value
0.000*

Degrees of Freedom
0
P-Value $\quad 1.0000$
Scaling Correction Factor 1.0000
for MLR
RMSEA (Root Mean Square Error Of Approximation)

$$
\text { Estimate } 0.000
$$

CFI/TL

CFI	1.000
TLI	1.000

SRMR (Standardized Root Mean Square Residual)

Value for Within	0.000
Value for Between	0.000

MODEL RESULTS				
Two-Tailed				
Estim	S.E. Est./S.E. P-Value			
Within Level				
NMARE_F ON				
W_REST_F	-0.002	0.001	-1.689	0.091
W_NMOODF	F 0.003	30.001	2.525	550.012
W_NMOODF ON				
W_REST_F	0.534	0.119	4.466	0.000
Between Level				
B_NMOODF ON				
B_REST_F	-0.623	0.141	-4.423	0.000
NMARE_F ON				
B_NMOODF	0.063	0.015	4.179	90.000
B_REST_F	0.002	0.020	0.101	0.919
New/Additional Parameters				
INDB	-0.039 0.01	$0.012-3$	3.3160.	0.001
INDW	0.0020.	0.001	2.390 0	0.017

CONFIDENCE INTERVALS OF MODEL RESULTS
Lower .5\% Lower 2.5\% Lower 5\% Estimate Upper 5\% Upper 2.5\% Upper .5\%
Within Level
NMARE_F ON

W_REST_F	-0.006	-0.005	-0.004	-0.002	0.000	0.000	0.001

W_NMOODF ON
$\begin{array}{llllllll}\text { W_REST_F } & 0.226 & 0.299 & 0.337 & 0.534 & 0.730 & 0.768 & 0.841\end{array}$
Between Level
B_NMOODF ON

B_REST_F	-0.987	-0.900	-0.855	-0.623	-0.392	-0.347	-0.260

NMARE_F ON

B_NMOODF	0.024	0.034	0.038	0.063	0.088	0.093	0.102
B_REST_F	-0.051	-0.038	-0.032	0.002	0.036	0.042	0.055

New/Additional Parameters							
INDB	-0.070	-0.063	-0.059	-0.039	-0.020	-0.016	-0.009
INDW	0.000	0.000	0.001	0.002	0.003	0.003	0.004

Findings: Positive Mood

1. Indirect effect of W/P restedness through W/P Positive Mood on Positive Marital Events: b $=.01, z=2.10, p=.036 ;$
2. Indirect effect of B / P restedness through B / P Positive Mood on Positive Marital Events: $b=$ $.37, z=4.08, p=.000 ;$

Findings: Negative Mood

1. Indirect effect of W / P restedness through W/P Negative Mood on Negative Marital Events: b = .002, z = 2.39, p = .017;
2. Indirect effect of B / P restedness through B / P Negative Mood on Negative Marital Events: b $=-.04, z=-3.32, p=.001 ;$

Findings: Positive Mood

1. Indirect effect of W / P restedness through W / P Positive Mood on Negative Marital Events: b=.001, z = -2.12, p = .034;

Questions

- What do you think about this approach?
- Any suggestions?
- Bootstrapping?
- Questions about MLM Mediation?
- Neg. indirect effect?
- Example in the literature
- Moderated mediation
- Gospel applications

