Regression with Non-normal Outcomes: Applied Examples of Dichotomous, Categorical, Poisson, and Negative Binomial Outcomes

Jeremy Yorgason

Lance Erickson

Methods Workshop: Family Studies Center

500-Mean = 1.28 Std. Dev. = 0.447 N = 681 400-Frequency 300-200-100-0 1.5 2.5 0.5 2 Family Structure Simplified, 2 parent married and every other constellation is c

Family Structure Simplified, 2 parent married and every other constellation is c

Drug and Alcohol Use among Adolescents

0 = not true

1 = somewhat true

2 = often true

Saved, Planned how much to save for retirement

Gambling Behavior in College

Mean= .68 Variance = 2.50

If the **VARIANCE** is larger than the **mean**, you should specify a negative binomial distribution (this one is actually "zero inflated" as well).

Examples

- Logistic regression
- Multinomial logistic regression
- Ordered logistic regression
- Count outcomes
 - Poisson
 - Negative binomial
 - Zero-inflated Poisson or negative binomial

Logistic regression

• Use when the outcome is dichotomous

RealVictory

- Program to reduce recidivism in adolescents
- 6 cognitive-behavioral training sessions
 - Help individuals examine their attitudes and assess whether their actions are meeting their needs
- Set goals
- Twice daily phone calls for follow-up

Bahr SJ, Cherrington DJ, Erickson LD. 2016. "An evaluation of the impact of goal setting and cell phone calls on juvenile rearrests." *Int J Offender Ther Comp Criminol* 60: 1816-1835.

Was there an arrest in the next year?

quietly {

eststo t4a:	logistic	anyay1	treat	age	male	white	totprior	felprior	<pre>ib1.program</pre>		
eststo t4a1:	logistic	anyay1	numcalls	age	male	white	totprior	felprior	<pre>ib1.program</pre>	if	treat==1
eststo t4b:	logistic	anyfay1	treat	age	male	white	totprior	felprior	<pre>ib1.program</pre>		
eststo t4b1:	logistic	anyfay1	numcalls	age	/*male*/	white	totprior	felprior	ib1.program	if	treat==1

```
}
```

```
estout t4a t4a1 t4b t4b1, ///
    eform nolz cells(b(star fmt(3))) starlevels(* .10 ** .05 *** .001) ///
    stats(N, fmt(0)) collabel(none) eqlabel(none) drop(_cons) ///
    mlabel("Model 1""Model 2^a""Model 3""Model 4^a,b") ///
    mgroups("Any Arrest" "Any Felony Arrest", pattern(1 0 1 0) span) ///
    prehead("Table 4." ///
            "The Relationship of Treatment and Number of Calls with Any Arrest and Any Felony Arrest:" ///
            "Odds Ratios from Logistic Regression") ///
    varlabel(treat "Treatment" exposure " Posttreatment exposure days^c" age " Age" ///
             male " Male" white "
                                       White" totprior " Any" felprior "
                                                                                     Felony" ///
             1.program "Juvenile probation" 2.program "
                                                                     Rural" ///
             3.program " Secure care" cons "Constant" numcalls "Number of calls^c") ///
    refcat(age "Controls" totprior " Number of previous arrests" 1.program " Program site", label(" ")) ///
    postfoot("Note:" ///
             "^a Only treatment group included in analysis." ///
             "^b No females in the treatment group had a felony arrest." ///
             "^c In 100s. * p < .05, ** p < .01, ***p < .001, one-tailed tests.") ///
    varwidth(31)
```

	Any a	arrest	Any felo	ony arrest
	Model I	Model 2ª	Model 3	Model 4 ^{a,b}
Treatment	0.876		1.079	
Number of calls ^c		0.900		0.641*
Controls				
Age	0.867	0.926	0.786*	0.714*
Male	0.716	1.367	1.374	
White	0.835	0.730	1.397	1.247
Number of pretreat	tment arrests			
Any	1.022*	1.009	I.030***	1.023
Felony	0.987	0.980	0.973	0.992
Program site				
Probation	1.000	1.000	1.000	1.000
Rural	0.209****	0.201**	0.778	0.663
Secure care	0.159***	0.182**	2.878**	3.646*
N	256	136	256	136

Table 3. The Relationship of Treatment and Number of Calls with Any Arrest and Any

 Felony Arrest: Odds Ratio From Logistic Regression.

Note. Odds Ratios (OR) are the antilog of the model coefficients and represent the change in odds of experiencing an arrest for a one-unit increase in the independent variable. For example, the OR for number of calls in Model 4 is .641, which indicates that the odds of arrest would decrease by a factor of .641 if the number of calls increases by one unit (100 calls in this case). A commonly used alternative interpretation transforms the OR into a percentage— $(1 - 0.641) \times 100 = 35.9$ —indicating, in this case, that an increase of 100 calls reduces the odds of arrest by 35.9%.

^aOnly treatment group included in analysis.

^bNo females in the treatment group had a felony arrest.

cin 100s.

*p < .05. **p < .01. ***p < .001; one-tailed tests.

Logistic in Mplus

!Mplus Input syntax; Categorical are p2retsav; ANALYSIS: Estimator = ML; MODEL: p2retsav on P1Mat P1FinStr Income2;

Mplus Output P2RETSAV ON P1MAT -0.862 0.479 -1.801 0.072 -0.192 0.033 P1FINSTR -5.884 0.000 INCOME2 0.135 0.076 1.767 0.077 Thresholds P2RETSAV\$1 -2.217 0.570 0.000 -3.890 LOGISTIC REGRESSION ODDS RATIO RESULTS P2RETSAV ON P1MAT 0.422 P1FINSTR 0.826 INCOME2 1.145

Multinomial logistic regression

 Use when you have a nominal dependent variable with more than two categories

- Who do you know that would watch your house if you were hospitalized for two weeks?
 - Friend
 - Relative
 - No one

mlogit house female age married income health outprim attach veteran, cluster(zip) base(0) rrr
mlogit house female age married income health outprim attach veteran, cluster(zip) base(1) rrr

	Friend vs. No One	Relative vs. No One	Relative vs. Friend
Watch house			
Female	1.11	1.37	1.24
Age	.90*	.90*	1.00
Married	1.49	2.23	1.50
Household income (in \$1k)	1.00	1.00	.99*
Self-rated health	1.07	.99	.93
Leaves community for primary care	.83	.61	.74
Community attachment	1.34	1.40	1.05
Veteran	1.81	1.60	.88

Table 2. Community Attachment and Veteran Status as Predictors of Anticipated Help: Odds Ratios from Multinomial Logistic Regression

Note: Source—*Utah Rural Community Study*. N = 569. * p < .05; ** p < .01; *** p < .001; two-tailed tests.

Mplus input for a multinomial model;	Mplus Output			
Nominal = p2pns;	P2PNS#1 ON			
DEFINE:	P2EDU	1.650 0.284	5.816	0.000
!Creating a new variable that represents planning and saving for retirement;	P2AGE	0.664 0.140	4.754	0.000
!The reference category is the last group by default;	P2FINSTR	-0.076 0.100	-0.755	0.450
In this model, the last group includes those that didn't plan or save;	P2PNS#2 ON			
P2pns = ;	P2EDU	0.598 0.160	3.749	0.000
!Save and Plan = 1;	P2AGE	0.070 0.035	1.980	0.048
If p2retsav==1 and P2savpIn ==1 THEN p2pns =1;	P2FINSTR	-0.212 0.037	-5.670	0.000
!Save but not plan = 2;	P2PNS#3 ON			
If p2retsav==1 and P2savpIn ==2 THEN p2pns =2;	P2EDU	0.369 0.167	2.209	0.027
!Plan but not save = 3;	P2AGE	0.046 0.037	1.263	0.207
If p2retsav==2 and P2savpIn ==1 THEN p2pns =3;	P2FINSTR	-0.154 0.035	-4.373	0.000
!Not plan or save = 4;	LOGISTIC REGRES	SION ODDS RAT	TIO RESUL	TS
If p2retsav==2 and P2savpIn ==2 THEN p2pns =4;	P2PNS#1 ON			
MODEL:	P2EDU	5.206		
p2pns#1 p2pns#2 p2pns#3 on p2edu p2age p2finstr;	P2AGE	1.942		
	P2FINSTR	0.927		
	P2PNS#2 ON			
	P2EDU	1.819		
	P2AGE	1.072		
	P2FINSTR	0.809		
	P2PNS#3 ON			
	P2EDU	1.446		
	P2AGE	1.047		
	P2FINSTR	0.857		

Ordered logistic regression

• When your dependent variable has ordered categories

Add Health

- Are natural mentoring relationship related to education?
 - 12th grade GPA
 - Educational attainment
 - Less than high school diploma
 - High school diploma
 - Some college
 - College degree
 - Graduate degree

Erickson LD, McDonald S, Elder GH, Jr, 2009. "Informal mentors and educational achievement: Complementary or compensatory resources?" *Sociology of Education* 82: 344-367.


```
svyset [pweight=gswgt3_2], psu(scid)
```

global vars calcage3 female private extra ib0.work ib1.race income nhooddis pta ptamis intact hpaed parelate global vars1 tchrstud tchrstudmis class schsize numfr fgpa bcent10x appearance personality edasp pvt ogpa1

// 12-grade GPA
eststo t2a: svy, subpop(education): reg ogpa4 \$vars \$vars1
eststo t2b: svy, subpop(education): reg ogpa4 \$vars \$vars1 mentor
eststo t2c: svy, subpop(education): reg ogpa4 \$vars \$vars1 family friend teacher community

// Educational attainment

eststo t2d: svy, subpop(education): ologit degree \$vars \$vars1
eststo t2e: svy, subpop(education): ologit degree \$vars \$vars1 mentor
eststo t2f: svy, subpop(education): ologit degree \$vars \$vars1 family friend teacher community

estout t2a t2b t2c t2d t2e t2f, stats(N, fmt(%6.0fc)) eform(0 0 0 1 1 1) ///
cells(b(star fmt(%9.3f))) nolz numbers mlabels(none) eqlabels(none) collabels(none) ///
prehead("Table 2. Mentoring and 12th Grade GPA, Unstandardized Coefficients from OLS Regression") ///
postfoot("Notes: *p < .05, **p < .01, *** p < .001; two-tailed tests")</pre>

	12th-Grad	12th-Grade GPA ^a				
Variable	(1) (2) (3)	(4)	(5)	(6)	
Mentoring						
Mentor	.10	3***		1.529**	**	
Social role						
Relative		.100***			1.501***	
Friend		.059			1.400***	
Teacher		.151***			1.987***	
Community		.088**			1.303***	
Constant	48351	4491				
Ν	[9,216] [9,216]	[9,216] [12,6	21] [12,	621] [12,	621]	

Table 2. Influences on Educational Achievement and Attainment

^aUnstandardized coefficients from the OLS regression. ^bOdds ratios from the ordered logistic regression.

p* < .05, *p* < .01, ****p* < .001; two-tailed tests.

Ordered logistic regression in Mplus

• Specify as categorical, interpret as continuous Categorical is Education;

Interpret coefficient as a regular regression coefficient

Negative binomial regression

• Use when the dependent variable is a count and the mean and variance of the dependent variable are not the same

Poisson, Negative Binomial, and Zero Inflated Distributions

728

Poisson NB 0.20 7P ZNB 0.15 0 Density 0.10 0.05 0.00 0 2 6 10 Steps taken toward divorce

ATKINS AND GALLOP

Figure 1. Histogram of Marital Status Inventory with predicted probabilities from regressions. NB = negative binomial; ZIP = zero-inflated Poisson; ZINB = zero-inflated negative binomial.

Poisson vs. Negative Binomial Model

- Steps to setting up these models
- 1. Determine if Poisson or Negative Binomial is better fit to the data (do a chi-square difference test # of parameters difference and chi square distribution).
- 2. If lots of zeros, see if ZIP model is better than poisson or NB model (do a Vuong test, say in Stata).
- 3. See if ZINB model fits the data better than a ZIP model (especially if variance is greater than the mean these models are nested, so you can once again do a chi-square difference test between the two models.).
 - Model diagnostics: If model doesn't converge, try changing the start values.
 - Use bootstrapping (1000 bootstraps recommended by Atkins and Gallop (2007) and compare the bootstrapped results with the original results
- 4. Interpret model output

Interpreting Zero Inflated Model Output

Zero Inflated Models

- Interpret the "Zero" (#) portion of the model, with coefficients being logistic coefficients (pos = more likely to have a zero, neg = less likely to have a zero)
 - Exponentiate them and interpret as odds ratio
 - Or, transform into probabilities
- Interpret predictors in the "count" portion of the model the same way you would with a count outcome in a poisson/negative binomial model.
 - That is, after transforming the output (100(e^{B*δ} -1), then the coefficient represents the "percentage change in the expected counts"

Poisson vs. Negative Binomial in Mplus

• Poisson Count is SOGSFREQ(p);

MODEL FIT INFOR	RMATION							
Number of Free Para	ameters		4					
Loglikelihood								
H0 Value			-832.021					
H0 Scaling Co	orrection Fa	actor	2.9153					
for MLR								
Information Criteria								
Akaike (AIC)			1672.041					
Bayesian (BIC	C)		1687.619					
Sample-Size A	Sample-Size Adjusted BIC							
$(n^* = (n+2))$	/ 24)							
MODEL RESULTS	,							
	Two-Tailed							
	Estimate	S.E.	Est./S.E.	P-Value				
SOGSFREQ ON								
REL	-0.010	0.006	-1.650	0.099				
RACEDI	-0.072	0.149	-0.483	0.629				
AGE	0.036	0.010	3.827	0.000				
Intercepts								
SOGSFREQ	0.062	0.222	0.281	0.779				
-								

Negative Binomial Count is SOGSFREQ(nb);

MODEL FIT INFORM	IATION								
Number of Free Param	neters		5						
Loglikelihood									
H0 Value		-67	5.264						
H0 Scaling Corr	ection Fac	tor 0.	8713						
for MLR									
Information Criteria									
Akaike (AIC)		136	0.528						
Bayesian (BIC)		138	80.000						
Sample-Size Ad	justed BIC	C 136	54.137						
$(n^* = (n+2)/2)$	24)								
MODEL RESULTS									
	Two-Tailed								
	Estimate	S.E.	Est./S.E.	P-Value					
SOGSFREQ ON									
REL	-0.011	0.006	-1.774	0.076					
RACEDI	-0.103	0.136	-0.752	0.452					
AGE	0.048	0.015	3.122	0.002					
Intercepts									
SOGSFREQ	-0.166	0.342	-0.487	0.626					
Dispersion									
SOGSFREQ	1.310	0.167	7.867	0.000					

ZIP vs. ZINB in Mplus

CODEL EVE DIEGDI (ATION

Zero Inflated Poisson Count is SOGSFREQ(i);

MODEL FIT INFORMATION Number of Free Parameters 8 Loglikelihood -701.169 H0 Value H0 Scaling Correction Factor 1.5235 for MLR Information Criteria Akaike (AIC) 1418.337 Bayesian (BIC) 1449.492 Sample-Size Adjusted BIC 1424.112 $(n^* = (n+2)/24)$ MODEL RESULTS Two-Tailed S.E. Est./S.E. P-Value Estimate SOGSFREQ ON REL 0.000 0.006 0.055 0.956 RACEDI 0.010 0.125 0.083 0.934 AGE 0.022 0.009 2.514 0.012 SOGSFREQ#1 ON REL 0.026 0.011 2.303 0.021 RACEDI 0.201 0.245 0.823 0.411 AGE -0.046 0.027 -1.678 0.093 Intercepts SOGSFREQ#1 -0.032 0.629 -0.051 0.959 SOGSFREQ 0.639 0.216 2.963 0.003

B in Mplus Zero Inflated Negative Binomial Count is SOGSFREQ(nbi);

MODEL FIT INFORM	ATION			
Number of Free Parame	eters	9		
Loglikelihood				
H0 Value		-66	5.339	
H0 Scaling Corre	ection Factor	0).9423	
for MLR				
Information Criteria				
Akaike (AIC)		134	8.679	
Bayesian (BIC)		138	3.728	
Sample-Size Adjı	usted BIC	135	5.175	
$(n^* = (n+2) / 2)$	4)			
MODEL RESULTS				
	Two	-Tailed		
	Estimate	S.E.	Est./S.E.	P-Value
SOGSFREQ ON				
REL	0.003	0.007	0.384	0.701
RACEDI	0.078	0.140	0.558	0.577
AGE	0.048	0.018	2.624	0.009
SOGSFREQ#1 ON				
REL	0.126	0.052	2.400	0.016
RACEDI	1.893	1.682	1.126	0.260
AGE	-0.007	0.060	-0.119	0.905
Intercepts				
SOGSFREQ#1	-6.124	3.865	-1.584	0.113
SOGSFREQ	-0.345	0.389	-0.888	0.374
Dispersion				
SOGSFREQ	0.924	0.203	4.551	0.000

How many arrests in the next year?

quietly {

	eststo	t5a:	nbreg	totay1	treat	age	male	white	totprior	felprior	<pre>ib1.program</pre>		ر	irr
	eststo	t5a1:	nbreg	totay1	numcalls	age	male	white	totprior	felprior	<pre>ib1.program</pre>	if	treat==1,	irr
	eststo	t5b:	nbreg	totfay1	treat	age	male	white	totprior	felprior	ib1.program		ر	irr
	eststo	t5b1:	nbreg	totfay1	numcalls	age	/*male*/	white	totprior	felprior	<pre>ib1.program</pre>	if	<pre>treat==1,</pre>	irr
}														

```
estout t5a t5a1 t5b t5b1, ///
    eform nolz cells(b(star fmt(3))) starlevels(* .10 ** .05 *** .001) ///
    stats(N, fmt(0)) collabel(none) eqlabel(none) drop( cons) ///
    mlabel("Model 1""Model 2^a""Model 3""Model 4^a,b") ///
    mgroups("Any Arrest" "Any Felony Arrest", pattern(1 0 1 0) span) ///
    prehead("Table 5." ///
            "The Relationship of Treatment and Number of Calls with Total Arrests and Total Felony Arrests:" ///
            "Incidence Rate Ratios from Negative Binomial Regression") ///
    varlabel(treat "Treatment" exposure " Posttreatment exposure days^c" age "
                                                                                 Age" ///
             male " Male" white " White" totprior " Any" felprior "
                                                                                     Felony" ///
             1.program "Juvenile probation" 2.program "
                                                                    Rural" ///
             3.program " Secure care" cons "Constant" numcalls "Number of calls^c") ///
    refcat(age "Controls" totprior " Number of previous arrests" 1.program " Program site", label(" ")) ///
    postfoot("Note:" ///
             "^a Only treatment group included in analysis." ///
             "^b No females in the treatment group had a felony arrest." ///
             "^c In 100s. * p < .05, ** p < .01, ***p < .001, one-tailed tests.") ///
    varwidth(31)
```

Total a	arrests	Total felo	ny arrests
Model I	Model 2 ^a	Model 3	Model 4 ^{a,b}
1.064		0.944	
	0.923		0.644*
0.677****	0.689***	0.687***	0.694**
1.360	1.371	1.537	
1.254	1.176	I.760**	1.453
ent arrests			
1.022**	1.005	1.027**	1.018
0.941**	0.927*	0.961	0.988
1.000	1.000	1.000	1.000
0.360***	0.218***	0.977	0.615
0.357****	0.324**	2.158*	1.960
256	136	256	136
	Total a Model I 1.064 0.677**** 1.360 1.254 ent arrests 1.022** 0.941*** 1.000 0.360**** 0.357**** 256	Total arrests Model I Model 2ª 1.064 0.923 0.677*** 0.689*** 1.360 1.371 1.254 1.176 ent arrests 1.005 0.941** 0.927* 1.000 1.000 0.360*** 0.218*** 0.357*** 0.324** 256 136	$\begin{tabular}{ c c c c } \hline Total arrests & Total feld \\ \hline Model I & Model 2^a & Model 3 \\ \hline 1.064 & 0.923 \\ \hline 0.677^{****} & 0.689^{****} & 0.687^{****} \\ \hline 1.360 & 1.371 & 1.537 \\ \hline 1.254 & 1.176 & 1.760^{**} \\ ent arrests & & & \\ \hline 1.022^{**} & 1.005 & 1.027^{**} \\ \hline 0.941^{**} & 0.927^{*} & 0.961 \\ \hline 1.000 & 1.000 & 1.000 \\ \hline 0.360^{***} & 0.218^{****} & 0.977 \\ \hline 0.357^{****} & 0.324^{***} & 2.158^{*} \\ \hline 256 & 136 & 256 \\ \hline \end{tabular}$

 Table 4. The Relationship of Treatment and Number of Calls with Total Arrests and Total

 Felony Arrests: Incident Rate Ratios (IRR) from Negative Binomial Regression.

Note. Incident Rate Ratios (IRR) are the antilog of the model coefficient and represent the rate of change in arrests for a one-unit increase in the independent variable. For example, the IRR for number of calls in Model 4 is .644, which indicates that the incidence of arrests would decrease by a factor .644 if the number of calls increases by one unit (100 calls in this case). A commonly used alternative interpretation transforms the IRR into a percentage— $(1 - 0.644) \times 100 = 35.6$ —indicating, in this case, that an increase of 100 calls reduces the rate of felony arrests by 35.6%.

^aOnly treatment group included in analysis.

^bNo females in the treatment group had a felony arrest.

cIn 100s.

*p < .05. **p < .01. ***p < .001; one-tailed tests.

Zero-inflated Poisson

• Use when you have a count dependent variable with an equal mean and variance once you account for an excess of 0's.

Montana Health Matters

- Predictors of the number of doctor visits in the last 60 days
 - Primary care physical (PCP)
 - Specialist

mi svyset zipcode [pweight=hhweight_n], strata(strata) singleunit(certainty) || houseid

local vars age female white married ib1.educ inc1k ib0.vetenrol pc_dist ib1.rural

eststo t2a: mi estimate, post cmdok: svy: zip drvsts `vars', inflate(`vars') eststo t2b: mi estimate, post cmdok: svy: zip spvsts `vars', inflate(`vars')

Table 2.

Understanding predictors of recent doctor visits: Exponentiated coefficients from zero-inflated Poisson model

	РСР)	Specialist		
	Main	Inflate	Main	Inflate	
Pre-disposing characteristics					
Age (in years)	.998	.975***	.976***	.999	
Female	1.317**	.828	.785*	1.156	
White	.706**	1.039	1.167	1.014	
Married	1.243*	1.201	.803*	1.113	
No HS degree	1.000	1.000	1.000	1.000	
HS degree	.808	.888	1.288	.930	
Some college	1.123	1.424	1.279	1.068	
College degree	.716	1.010	1.332	.946	
Graduate degree	.797	.899	.837	.997	
Income (in \$1,000)	.995**	.997	1.000	.999	
Non-veteran	1.000	1.000	1.000	1.000	
VA enrolled	1.751***	.538*	.587*	1.213	
VA non-enrolled	.898	.485**	.835	1.205	
Accessibility					
Distance to PC	1.000	.999	.997	1.000	
Rurality					
Urban	1.000	1.000	1.000	1.000	
Rural	.916	1.090	1.042	1.095	
Highly rural	1.010	.999	1.134	1.137	

Note: N = 3,512. *p < .05, **p < .01, *** p < .001; two-tailed tests Source: *Montana Health Matters*.